
1

2006 World Congress on Computational Mechanics
Mini-Symposium on Computational Mechanics with
Adaptive Mesh Refinement

Applying Parallel Adaptive
Methods with GeoFEST/PYRAMID
to Simulate Earth Surface Crustal
Dynamics

Charles D. Norton

Greg Lyzenga, Jay Parker, Margaret
Glasscoe, Andrea Donnellan and Peggy Li

Jet Propulsion Laboratory

California Institute of Technology

July 21, 2006
Los Angeles, California

JPL Discreet

2

Why Adaptive Mesh Refinement?

 AMR simultaneously improves solution quality, time to solution, and computer
memory requirements when compared to generating/running on a globally fine mesh.

 Future proposed NASA missions, such as InSAR for Earth surface deformation
and other measurements, will require support for large-scale adaptive numerical
methods using AMR to model observations.

 AMR is applied across disciplines and various mesh geometries, but has seen
the greatest application and success in computation fluid dynamics for predictive
simulation of complex flows around complex structures.

Illustration of AMR showing improvement in surface displacement solution quality with mesh density
(Landers faulted mesh solved with GeoFEST/Pyramid).

~80 K Elements ~350 K Elements ~1400 K Elements

4 Processors 16 Processors 64 Processors

3

What is the State of the Art for Parallel AMR?

 Structured AMR is well established for rectilinear block-adaptive geometries.

 Unstructured AMR has been applied both for arbitrary geometries and where
structured methods have also be used.

 Composite/Overlapping AMR allows “patching” of structured grids to gain benefits
of structured approaches for CFD problems (conservation) while also supporting
complex geometries of unstructured methods

Unstructured AMR: Torus with 4
holes gridded using FMDB. E. Seol

and M. Shepard, Rensselaer.

Composite AMR: Submarine mesh
gridded using Overture. W. Henshaw,

et. al. LLNL

Structured AMR: Cometary
atmospheric pressure field using

PARAMESH. M. Benna et. al., GSFC.

4

What Tools Support Parallel AMR?

Fortran-based library (with C
adapters) and simple interface.

PYRAMID [Lou/Norton]

Very limited category.

Mesh smoothing is generally
used to control element quality.

Only C++/C implementations
available with complex
interfaces to solvers.

Unstructured AMR

SUMMA3D [Freitag]

PAOMD [Remacle/Shephard]

Many CAD tools exist for mesh
generation, but are not designed for
AMR and integration with solvers

Successful, but mesh generation
complexity has limited usage by
ordinary users.

Composite AMROverture [Henshaw]

World-Class tools.

Only PARAMESH supports
Fortran-based solvers directly.

Complex interfaces exist.

Structured AMR

CART3D [Aftosmis]

CHOMBO [Coella]

PARAMESH [MacNeice]

BATS-R-US [Hansen/Gombosi]

Many Other Tools Exist…

CommentsCategoryTool Name

 Many good sequential tools exist for mesh generation/solution with AMR

5

Modern... Simple... Efficient… Scalable...

Task Objective

Development of a Fortran object-based software library
supporting parallel unstructured adaptive mesh refinement for
large-scale scientific & engineering modeling applications.

NASA Programmatic Relevance

• Large scale modeling and simulation applications with
complex geometry including support of ESTO/CT Round III
teams such as Solid Earth tectonics modeling and more.

Charles D. Norton, John Z. Lou, Thomas A. Cwik,
and E. Robert Tisdale

Design Approach

• Efficient object-based design in Fortran 90/95 and MPI.

• Automatic mesh quality control, dynamic load balancing,
mesh migration, partitioning, integrated mathematics and
data accessibility routines, easy solver integration.

• Scalable to hundreds of processors and millions of elements
using triangles (2D) and tetrahedra (3D).

• Ease of use with development driven by application needs.

• Only refinement is officially supported at this time, but a
experimental coarsening capability exists

Relevant Application Areas

• Structural modeling and engineering mechanics for Earth
and Space science applications.

• Fluid mechanics and gas dynamics.

• Solid Earth active tectonics simulation models.

• Design modeling of microwave active devices.

• Fast mesh generation from high quality coarse meshes.

Overview of Pyramid Parallel AMR Library

6

Benefits of AMR vs. Software Complexity

 Fewest DOF (nodes) required for a
problem solution of a given accuracy.

 Saves orders of magnitude in CPU
and memory requirements for some
classes of problems enabling previously
intractable problems.

 Required in Earth/Space Sciences
for problems with large spatial/temporal
dimensions.

 Avoids trial-and-error in grid
selection especially for problems with
traveling discontinuities.

 Unstructured AMR captures
complex geometry, but structured AMR
software design is easier.

 Maintaining good element
geometry is not a solved problem
when considering trade-offs in mesh
interpolation and element creation.

 Very few general purpose
packages and almost none are
Fortran-based.

 Error estimation can be
complex when determining criteria to
drive refinement.

7

Pyramid Parallel AMR Process

 Partitioning, Load Balancing, Adaptive
Refinement, Mesh Migration, Quality
Control

Initial Mesh Partitioning

Application Computation

Error Estimation

Adaptive Refinement
(Logical) Load Balancing Repartitioning/Migration

Adaptive Refinement
(Physical)

No

No

Mesh
Smoothing/Improvement

AMR Quality Control

8

Element Refinement and Coarsening

Refinement Patterns help ensure mesh consistency (no
hanging nodes)

No Quality Control gives poor
aspect ratios

Quality Control maintains
element geometry betterQuality Control Algorithm shown in 2D

9

Implementation Issues for Parallel AMR and
GeoFEST

 Element labeling schemes and per-
processor indexing should be consistent
across codes.

 Mesh creation and conversion is
required as pre-processing steps.

 Pyramid only supports tetrahedral
elements for parallel AMR (currently).

 Two representations of mesh geometry
are needed as GeoFEST maintains an internal
version of the mesh (simplifies interfacing, but
adds storage overhead).

 AMR refinement overhead is small even
for meshes with 10s of millions of elements
where 100s of millions can be supported.

 Visualization of large data runs is
complex and often requires use of parallel
visualization/animation tools like RIVA.

10

Overview of Using AMR in GeoFEST

 GeoFEST performs operations to modify the “state” of
Pyramid objects and relies on Pyramid for information
and operations related to parallel processing

 PreProcessing

 Run GFMeshParse on GeoFEST input to create Pyramid input

 Processing

 Specify # of field variables to track on each mesh component

 Distribute GeoFEST input data using Pyramid mesh partitioning

 Solve on the coarse mesh

 Apply per-element error estimation criteria (strain energy)

 Perform AMR (logical refinement, load balancing, physical
refinement)

 Update GeoFEST data structures and interpolate to new field
variables

 Solve on the refined mesh

 Post Processing

 Visualize results by transformations to TecPlot format

11

Sample Pyramid Command

 PAMR_GET_PARTITION_NODES

 Interface

 function PAMR_GET_PARTITION_NODES(this) RESULT(this)

 Arguments

 type (mesh), intent(in) :: this

 Integer, dimension(this%loc_boundary_nodes) :: terms

 Description

 Returns, in a one-dimensional array, the global_ids of nodes on the partition boundary.

 Notices

 Use PAMR_NODE_PARTITION_COUNT to get the size of the array to allocate for the result of
this function.

 Most Pyramid Commands operate on a “mesh” type/object as the primary
mechanism to modify and or access mesh components.

 Mesh index locations can be returned as well to map directly into GeoFEST storage.

 Over 100 Commands Exist but really only a handful are needed to be productive.

12

Mesh Partitioning, Migration, & Load Balancing

Element-based Partitioning achieves balanced load, connected components, and reasonable edge-
cut quality. Coarse elements are weighted, migrated, then refined to load-balanced partitions.

Graph Partitioning represents an important
aspect of minimizing communication at

boundaries.

Mesh Migration Algorithms must handle
irregular redistribution of mesh components

efficiently and correctly

13

Solution Driven AMR for Fault Stepover

Initial Coarse Stepover Mesh
(2D Surface of 3D Mesh Shown)

Strain-Energy-Based Refinement where additional nodes are added by two different AMR processes.
Yee-refinement scheme “smooths” node positions to maintain reasonable element aspect ratios. PYRAMID
AMR scheme uses quality-control maintaining coarse mesh node positions

Solution Interpolations may be slightly less precise when mesh smoothing is performed, however, if
refinement/coarsening is applied the quality of the Pyramid solution is driven by the quality of the initial
coarse mesh (a trade-off)

Yee-Refinement with Mesh
Smoothing

Pyramid Refinement with Mesh
Quality Control

14

Direct Mesh Generation for Landers Simulation

Improvement in Fringes illustrated
when AMR is applied

Interferegrams of Elastic Displacement where
direct addition of nodes around the fault region, with
parallel mesh partitioning, improves resolution.

4 Procs with 82 K Elements 64 Procs with 1400 K Elements

15

Solution-Driven AMR for Landers Simulation

Views of Parallel AMR applied to form ~16 M element
mesh that could not be generated using GuiVisco sequentially

GeoFEST Simulated Surface Displacement from
coseismic Landers model. Viscoelastic phase (not shown) run
for 500 year simulation on ~500 procs over ~12 hours where

AMR processing is negligible.

16

Communication Performance and Optimization

Two Iterations of PCG solve of Thousands
Performed show communication efficiency for a 4
processor example. Black shows computation, Red
shows WAITALL (completion of matrix-vector products)
and violet ALL_REDUCE (global combine of parts of
vector dot product) communication. Computation
dominates giving scalability.

Sparse Kp product

Complete Kp productVector dot products

Improper Communication Scheme focuses on
balanced communication that does not scale since
more communication operations are applied than is
strictly needed.

Non-Scalable Solution

